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THE GRIFFITH ENERGY PROBLEM FOR BRITTLE POLYMERS

E′ . M. Kartashov UDC 539.3

A number of problems concerning the Griffith criterion for brittle polymers have been considered. A general
formula for the energy of deformation of a stressed sample with surface and internal cracks has been derived.
This energy was calculated simultaneously for the plane and plane-deformed states of this sample. The com-
monly accepted view that the Griffith criterion determines a quasi-safe stress that differs markedly from the
athermal-fracture criterion was verified.

In brittle materials, initial micro- and submicrocracks begin to grow to fracture cracks after these materials are
subjected to the action of a load exceeding the safe load σ0. It should be noted that microcracks differ more or less
markedly by the degree of their danger, and, what is no less important, the growth of one crack leads to an unloading
of the surrounding material and decelerates the growth of the neighboring cracks. Therefore, the strength and longevity
of polymer materials are determined in practice by the growth of the most dangerous one or, more rarely, several
micro- or submicrocracks to the critical length lc, at which the fracture process becomes athermal (rapid) and proceeds
at a critical rate vc determined by the rate of propagation of an elastic disturbance in these materials. For organic poly-
mers vc = (5–8)⋅102 m/sec, for polymethylmethacrylate (PMMA) vc = (700–800) m/sec, and for inorganic glass vc =
2000 m/sec [1]. This rate can be estimated by the Robert–Wells formula [2]

vc = 0.38 √E ⁄ ρ  . (1)

Investigations of submicroscopic cracks in actual polymers with the use of diffraction methods made it possi-
ble to determine their dimensions (longitudinal and transverse), form (sections in plates, disks in polymer fibers), and
location (surface or internal cracks). Cracks interpreted within the framework of the mechanical models presented
below had fairly small initial dimensions. The initial length l0 of microcracks detected in samples of width (or diame-
ter) L equal to several millimeters was 1700 A°  for PMMA, 3000 A°  for polyvinylbutyral, 170 A°  for polyethylene, 320
A°  for polypropylene, 3000 A°  for polyvinylchloride, and 90 A°  for caprone [2].

To this it must be added that fractography investigations of the fracture surface of polymers have shown that
the critical length lc of a crack is independent of the cross section of a sample; samples with cross sections differing
by more than 100 times were used in these investigations [2]. It was established that in all cases, a fracture crack in-
itially represents a defect of length l0 and grows along the normal to the direction of a maximum tensile stress. Since
the opening of this crack is small in comparison with its length, it can be defined as

λ << l0 ≤ l (τ) ≤ lc << L ,   0 ≤ τ ≤ τf . (2)

In accordance with (2), a sample shaped as a plate (or a cylindrical bead) can be interpreted as an elastic
plane (x, y) with an internal crack x < l0, y = 0; as an elastic semiplane x > 0, y < ∞ with a surface crack
0 < x < l0, y = 0; or as an elastic space (x, y, z) with an internal circular axisymmetric crack z = 0, 0 ≤ r < R0.

Deformation Energy of Samples with Surface and Internal Cracks. We now derive general analytical re-
lations for calculating the deformation energy of samples representing infinite plates with surface and internal cracks.
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In the process of loading, the forces applied to a sample do work W (equal to the deformation energy). In this case,
it is assumed that the sample remains elastic and a kinetic energy is not formed. First, we will consider the case of
formation of a surface crack x < l0, y = 0 in an elastic semiplane R2 = (x, y) at x > 0 and y < +∞.

Let G∗ = 

(x, y): y = 0, x < l0




, D = R2 \ G∗ be a convex region in the stressed state; σij(x, y), εij(x, y), and ui(x,

y) be respectively components of the stress tensor, deformation tensor, and displacement vector (i, j = x, y). The chal-
lenge is to obtain an analytical expression for calculating the deformation energy of an elastic semiplane with a surface
x = 0 free of stresses and a surface crack, on the edges of which an arbitrary loads act. Let us write the main statis-
tical relations for the region D of the elastic plane (in index designations) found simultaneously in plane and plane-de-
formed states (these states are of independent interest):

σij,j (x, y) = 0 , (3)

εij (x, y) = (1 ⁄ 2) [ui,j (x, y) + uj,i (x, y)] , (4)

σij (x, y) = 2µεij (x, y) + λ∗e (x, y) δij , (5)

where µ = G = E/[2(1 + ν)], λ∗ = νE/(1 − ν2) for the plane state, λ∗ = 2Gν/(1 − 2ν) for the plane deformation, and
e(x, y) = εii(x, y) (i = x, y). The deformation energy of the region being considered is equal to [1]

W = (1 ⁄ 2)  ∫
D
∫ (σxxεxx + σyyεyy + σxyεxy) dxdy =

= (1 ⁄ 2)  ∫
D
∫ 


∂
∂x

 (σxxux + σxyuy) + 
∂
∂y

 (σyyuy + σxyux)



 dxdy , (6)

where γxy = 2εxy. Let L∆ be the contour formed by the lower and upper edges of the crack and Cr be the contour
shown in Fig. 1 (ABC is the arc of a circle of radius r). Rewriting (6) in view of the Ostrogradskii–Gauss formula
for the region restricted by the contours Cr and L∆, we obtain

Fig. 1. On the calculation of the deformation energy of a sample with a surface
crack.
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W = (1 ⁄ 2)  ∫ 
ABC

 

(σxxux + σxyuy) cos (n, x) + (σyyuy + σxyux) cos (n, y)


 dS +

= (1 ⁄ 2) ∫ 
L∆

(σyyuy + σxyux) cos (n, y) dS + (1 ⁄ 2)  ∫ 
MQN

 σijdεij = J1 + J2 + J3 . (7)

Since cos (n, x)dS = dy = r cos ϕ dϕ and cos (n, y) dS = −dx = r sin ϕ dϕ,

J1 = (1 ⁄ 2)  ∫ 
−π ⁄ 2

π ⁄ 2

 

(σxxux + σxyuy) r cos ϕ + (σyyuy + σxyux) r sin ϕ


 dϕ .

Let z = r exp iϕ = r → ∞. Since the main vector of all the external forces acting on the region D is

equal to zero, at large values of z the stress components will be of the order of σij(x, y) = o


1

z
2



, the quantity

ui(x, y) will be limited [3], and, consequently, the condition lim
z=r→ ∞

   J1 = 0 will be fulfilled. On MQN, x = ε cos ϕ, y =

ε sin ϕ, and   lim
z=r→ ∞

   J3 = 0. The quantity J2 is determined using the relation dx = dS cos (t′, x) [3], where t′ is the

tangent to the path of integration, pointed towards the direction of displacement, as is shown in Fig. 1, and n is the
rightward normal when looking along t′. In this case, cos (t′, x) = 1 and dS = dx at the upper edge of the crack and

cos (t′, x) = −1 and dS = −dx at its lower edge. The above-described representation of J2 leads to the following ex-

pression for the deformation energy of the elastic semiplane with a surface crack:

W = (− 1 ⁄ 2) ∫ 
0

l

(σyy

+
uy
+
 − σyy

−
uy
−) + (σxy

+
ux
+
 − σxy

−
ux
−)y=0

 dx , (8)

where the plus denots the upper edge of the crack and the minus denotes its lower edge. The deformation energy of
an elastic plane (x, y) with an internal rectilinear crack y = 0, x < l0 can be determined analogously:

W = (− 1 ⁄ 2) ∫ 
−l0

l0

(σyy

+
uy
+
 − σyy

−
uy
−) + (σxy

+
ux
+
 − σxy

−
ux
−)y=0

 dx . (9)

Relations (8) and (9), representing fundamental relations of brittle-fracture mechanics, can be used as general relations
for the above-considered particular cases. For example, when a crack is subjected to the action of a nonuniform nor-
mal load P(x), which is even with respect to x [σyy

% (x, 0) =  −P(x), x < l0, (x < l0), σxy
% (x, 0) = 0, x < l0, (x < l0),

uy
+(x, 0) = −uy

−(x, 0)], the deformation energy of surface and internal cracks will be equal, respectively, to

W = ∫ 
0

l0

P (x) uy
+
 (x, 0) dx ,   W = 2 ∫ 

0

l0

P (x) uy
+
 (x, 0) dx . (10)

To illustrate the second relation of (10), we will consider the problem on the extension of an elastic plane with
an internal crack by a uniform stress applied at infinity, which is associated directly with the derivation of the
Griffith theorem. Buckner has shown (references in [1]) that the tensile stress σ at infinity arises under the ac-
tion of a load applied to the edges of a crack. Thus, the case in point is the solution of problem (3)–(5) with
boundary conditions
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σyy
%

 (x, 0) = − σ ,   x < l0 ; (11)

σxy
%

 (x, 0) = 0 ,   x < l0 ; (12)

σij (x, y)
√x2+y2

→ ∞
 = 0 ,   i, j = x, y ; (13)

ui (x, y) < + ∞ ,   (x, y) 8 D . (14)

To solve this problem, we will use the Muskhelishvili–Kolosov complex potential [3]. This approach also makes it
possible to investigate a more complex case — the Griffith criterion for the stress arising under the simultaneous
action of mechanical and thermal loads, which is still an open question of solid-strength physics and is planned to
be investigated at a later time. In [3], it was shown that the stress and displacement components in (3)–(5) can be
expressed in terms of the two analytical functions Φ(z) and Ω(z) (complex potentials) of the one complex argu-
ment z = x + iy:

σxx + σyy = 4Re [Φ (z)] , (15)

σyy − iσxy = Φ (z) + Ω (z
_
) + (z − z

_
) 

dΦ
__

 (z)
dz

 , (16)

2G (ux + iuy) = κϕ1 (z) − ω (z
_
) − (z − z

_
) Φ (z)
_____

 , (17)

where

ϕ1 (z) = ∫ Φ (z) dz ;   ω (z
_
) = ∫ Ω (z

_
) dz
_
 ; (18)

κ = (3 − ν)/(1 + ν) for the plane state and κ = (3 − 4ν) for the plane deformation. The indefinite integral ∫  f(z)d(z) in

(18) represents the function

F (z) = ∫ 
z0

z

f (z ′) dz
 ′ + const , (19)

where the integral is taken along an arbitrary path in the holomorphy region (x, y) 8 D connecting the arbitrary fixed
point z0 with the moving point z, and const is an arbitrary (complex) quantity playing no part in the further discus-
sion. At y = %0, from boundary conditions (11) and (12) and expression (17) we obtain the following expressions for
the edges of the crack:

[Φ (t) + Ω (t)]
+
 + [Φ (t) + Ω (t)]

−
 = − (2σ) = p ,   t < l0 ; (20)

[Φ (t) − Ω (t)]
+
 − [Φ (t) − Ω (t)]

−
 = 0 = q′ ,   t < l0 , (21)

which represent the boundary conditions for the linear-conjunction problems (Riemann–Hilbert problems). Their solu-
tions have the form
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Φ (z) + Ω (z) = 
1

2πiΧ (z)
  ∫ 
−l0

l0

 
pΧ (t)
t − z

 dt + 
2 (C0z + C1)

Χ (z)
 , (22)

Φ (z) − Ω (z) = 
1

2πi
  ∫ 
−l0

l0

 
q′dt
t − z

 + [Φ (∞) − Ω (∞)] , (23)

where C0 and C1 are indeterminate constants that should be determined;

Χ (z) = √z2 − l0
2  ; (24)

X(t)  = X +(t)  = X(z)y=+0 = √t2 − l0
2  is the value of this function at the upper edge of the crack and X−(t)  =

X(z)y=−0 = √t2 − l0
2  is the value of the function at the lower edge of the crack. In this case,

√z2 − l0
2
y=%0

 = % i √l0
2 − t2  ,   t < l0 . (25)

The asymptotic behavior of the complex potentials at infinity leads to the following relations:

Φ (∞) − Ω (∞) = − Γ
__

 ′ ,   Ω (∞) = Γ
__

 + Γ
__

 ′ ,   Γ ′ = (1 ⁄ 2) σyy
(∞)

 − σxx
(∞)

 + iσxy
(∞)

 ,

Γ ′ = (1 ⁄ 2) σyy
(∞)

 − σxx
(∞)

 − iσxy
(∞)

 ,   Γ = (1 ⁄ 2) σyy
(∞)

 + σxx
(∞)
 + iC

 ′ ,   C
 ′ = 2Gε∞ ⁄ (1 + κ) ,

where ε∞ is a constant determining the rotation of the infinitely distant part of the plane and having no influence on
the stress. The quantity C′ can be assumed to be equal to zero, and it follows from conditions (13) that Γ′ = Γ′

__
 = 0

and Γ = Γ
__

 = 0. Thus, Ω(∞) = 0, Φ(∞) = 0, and, according to (22) and (23),

Φ (z) = Ω (z) = (− σ ⁄ 2) 



1 − 

z

√z2 − l0
2




 + 

C0z + C1

√z2 − l0
2

 . (26)

Since Φ(∞) = lim
z→ ∞

   Φ(z) = 0, it follows from (26) that C0 = Φ(∞) = 0. The coefficient C1 is determined on

condition that the displacement be univalent. According to (17), this condition is fulfilled if the expression κϕ1(z)

− ω(z
_
) takes its initial value when the point z traces out the closed contour Λ around the crack. Contracting the contour

Λ to the segment L∆ formed by the upper and lower edges of the crack, we obtain the condition for the constant C1:

κ  ∫ 
−l0

l0

 Φ
+
 (t) − Φ−

 (t) dt +  ∫ 
−l0

l0

 Ω
+
 (t) − Ω−

 (t) dt = 0 ,

from which and from expressions (25) and (26) it follows that C1 = 0. Thus,

Φ (z) = Ω (z) = (− σ ⁄ 2) 

1 − 

z

√z2 − l0
2



 . (27)

For the case described by (11)–(14), the deformation energy is equal, according to (10), to

W = 2σ ∫ 
0

l0

uy
+
 (x, 0) dx . (28)
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The displacement component in (28) is determined from (17):

uy (x, y)y=+0
 = 

1
2G

 

Im [κϕ1 (z) − ω (z

_
)]

y=+0
 = 

σ (κ + 1)
4G

 √l0
2 − x2 ,

whence, we obtain, using (28), the desired quantity

W = 
πσ2

l0
2
 (κ + 1)
8G

 . (29)

Expression (29) forms the basis for the Griffith theory [4], in which the development of a crack in a body is ex-
plained by the accumulation and release of a deformation energy in this body. As a model, Griffith used an elastic
body containing a crack (displacement-discontinuity surface) of area S′. When the displacement-discontinuity surface
increases by a virtual value δS′, external forces applied to the body do a work δAS equal to the energy δW by which
the elastic energy of the body decreases as a result of the action of these forces. On the other hand, an increase in
the surface of the crack leads to an increase in its surface energy by δΠ. According to Griffith, the energy criterion
of the equilibrium state of a crack is δ(W − Π) = 0. Thus, a crack is in the stable state at δΠ > δW, in the nonstable
state at δΠ < δW, and in the neutral (equilibrium) state at δΠ = δW. In the case described by (11)–(14), the parameters
of the critical equilibrium state are determined from the expression δ(W − Π)/dl0 = 0, where Π = 4αsurl0 (αsur is the
free surface energy of a material in vacuum). Hence, the Griffith criterion has the form

σGr = 4 √αsurG

π (κ + 1) l0
(30)

for the plane state and the plane deformation. At σ > σGr, a crack increases at a rate determined by (1), and at
σ < σGr the crack does not increase. Thus, the threshold stress σGr is, according to Griffith, the fracture criterion. Up
till now, Griffith’s standpoint has been adopted by many researchers considering this energy approach as an important
tool for the derivation of theoretical relations for different conditions of fracture of brittle solid bodies [5].

The first doubts of the reliability of the physical meaning of the Griffith criterion were cast when relation
(30) (obtained by Griffith too) was used as a basis of the fractometry method of determining an important strength
characteristic of a material in the plane — the free energy of its surface:

σGr = √2Eαsur

πl0
 . (31)

The quantity αsur is calculated for a microcrack of length l0 arising on the surface of a sample under the action of the
critical stress σc breaking the sample; in this case, it is assumed that σc = σGr. However, the values of αsur calculated
by (31) were very overstated. For example, the calculations of αsur for inorganic glass in vacuum, performed by Ber-
dennikov (references in [2]), gave αsur = 1.2 J/m2, while the experimental value of this quantity, obtained by Tsisman
[1], is equal to αsur = 0.5 J/m2. This circumstance can be explained by two reasons. In order that (31) could be used,
it was assumed that the length of an edge crack is two times smaller than the length of an internal crack. However,
this assumption is incorrect since, in the case where σGr for an edge microcrack is strictly calculated from the relation
δ(W − Π)/dl0 = 0, the deformation energy W should be determined with account for the influence of the free boundary
of the body. This problem was considered in [6], where it was shown that the deformation energy of a sample with
a surface crack y = 0, 0 < x < l0 formed as a result of the extension of the sample by a constant stress σ is equal to

W = 
πσ2

l0
2

2E
 , (32)

and is two times smaller than the deformation energy necessary for the formation of an internal crack y = 0,

x < l0. If the surface energy of an edge crack Π = 2αsurl0, the Griffith energy criterion leads to the following ex-
pression for the threshold stress of this crack:
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σGr = √2Eαsur

πl0
(33)

This stress is equal to the stress determined by (31) for an internal crack. Result (33) is of fundamental importance
for solid-strength physics; it was predicted earlier in [2] in the process of investigating the thermokinetics of the brittle
fracture of polymers in mechanical fields.

The second reason for the above-indicated difference is that, in actuality, the fracture threshold σGr differs
from the critical stress σc: the experimentally determined stress σc breaking a sample differs from the theoretical frac-
ture threshold σGr obtained in calculating αsur in (31). According to the notions of the theory of thermofluctuation
strength [2, 7], the critical stress σc responsible for the athermal stage of the fracture process proceeding at a rate de-
termined by (1) is equal to

σc = 
(U0 − qT) √λ

χVa
 l0
−1 ⁄ 2 , (34)

where U0 is the energy of activation of an elementary act of fracture in the absence of a stress (this energy is close
in value to the chemical-bond energy of polymers) and χ = 0.79 and 0.71 for the surface and internal cracks respec-
tively. The first considerations concerning the physical meaning of criterion (31) were made in [7] on the basis of the
thermodynamic approach to the fracture process; it was suggested that σGr is not a fracture criterion in the commonly
accepted sense and is equal to the safe stress. These considerations will be supported below by strict quantitative cal-
culations performed on the basis of an analytical formula for the rate of growth of a crack. Thermofluctuational frac-
ture processes can be described at the atomic-molecular level with the use of the model of weakly coupled harmonic
oscillators. In this model, an elementary act of breaking (or restoration) of the chemical bonds at the top of a crack is
interpreted as the classical climb over the potential barrier [1]. This made it possible to obtain, using the molecular
model of a crack, an analytical expression for the frequency of breaking and restoration of the chemical bonds at the
top of the crack [1]. Then, using the thermodynamic potentials for describing the brittle fracture of polymers on the
basis of physical kinetics accounting for the statistics of breaking and recombinations of the bonds at the top of a
crack, occurring with a definite frequency, we obtain the following generalized expression for the rate of growth of the
crack with account for the deformation energy of the sample:

v (l, σ, T) = 2λv0 exp 



− 

U0 − qT − αsurλλπ
kT




 sinh 





Vaσ
∗
 − αsurλλπ

kT
 + 
πσ2

l0λλπ
2EkT




 . (35)

Here, σ∗ = σβ(l0)√l ⁄ l0  (in the volume Va) and β(l0) = χ√l0 ⁄ λ  is the coefficient of stress concentration at the top of
the crack, corresponding to its initial length; the other parameters will be described below. At any external stress σ =
σGr
(0), between the processes of breaking and restoration of chemical bonds, there arises a dynamic-equilibrium state at

the crack top. In this case, the rate of growth of the crack is equal to v(l0, σGr
(0), T) = 0. The stress σGr

(0) corresponding
to the equilibrium state will be called the quasi-safe stress [8]. The value of σGr

(0) will be determined from (35) at
v(l0, σGr

(0), T) = 0 with allowance for the fact that, in this case, the local stress σ = σ0
∗ = βσGr

(0):

σGr
(0)

 = (βλmE ⁄ πl0) √1 + 2πl0αsur
 ⁄ (β2λmE)  − 1 . (36)

To simplify relation (36), we will estimate the term W = 2πl0αsur/(β
2λmE) for a number of polymers (organic and in-

organic). For example, for PMMA [2] l0 = 0.23 µm, αsur = 39⋅10−3 J/m2, β =  9, λm = 1.5⋅10−4 µm, and E =
3.93⋅109 N/m2, and for inorganic (silicate) glass [2] l0 = 4 µm, αsur = 0.5 J/m2, β = 60, λm = 1.64⋅10−4 µm, and E
= 5.89⋅1010 N/m2. In both cases, W >> 1; therefore, simplifying (36), we find that

σGr
(0)

 = √2Eαsur

πl0
 , (37)
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This quantity is equal to the Griffith fracture threshold. Consequently, the Griffith criterion σGr
(0) determines the stress

beginning with which a crack grows with an increasing rate in accordance with (35). A stress lower than σGr
(0) can also lead

to a fracture: according to [8], a crack formed due to thermal fluctuations can attain, in a random way, a state in which the
rate of its growth becomes positive. In the experiments on the long-term strength of the polymers being considered, at
stresses smaller than σGr

(0), the longevity isotherm grew to the region of infinitely large values: log τ(σ < σGr
(0), T) → ∞.

The problem on the physical meaning of the Griffith criterion can be considered in a different context — on
the basis of the so-called diagram of strength states (σ, l0) of polymer materials. In the thermodynamic fluctuation the-
ory of strength [7], another critical state is introduced — the safe stress σ0, characterizing the asymptotical approach
of the longevity isotherm to larger times: log τ(σ, T) → ∞ at σ → σ0. According to [2], the safe stress is equal to

σ0 = 
αsur

βλm
 = 
αsur √λ
χλm

 l0
−1 ⁄ 2 . (38)

The value of σ0 is also calculated from relation (35) but without account for the influence of the deformation energy
of a stressed sample on the growth of a crack; in this case, the energy balance between the elastic energy of an indi-
vidual chemical bond (or a group of bonds) at the top of the crack and the energy of the fracture surface formed is
considered. Figure 2 shows the diagram of strength states, important in practice, of PMMA samples shaped as strips
with edge microcracks of different length: curve 1 corresponds to the safe stress σ0 determined by (38), curve 2 cor-
responds to the quasi-safe stress σGr

(0) determined by (37), curve 4 corresponds to the critical stress determined by (34),
and curve 3 corresponds to the boundary of the transient region σf < σ < σc, where the athermal mechanism begins to
manifest itself and the contribution of this mechanism to the total fracture mechanism becomes comparable to the con-
tribution of the thermofluctuation mechanism.

The value of σf is calculated from the relation τf(σf, T) = τc, where τf(σf, T) is the longevity of a sample
at the thermofluctuation-fracture stage [2] and τc is the time of the athermal stage of the fracture process proceeding
at a rate determined from (1): τc D (L − lc)/vc. It follows from the indicated diagram that the Griffith threshold stress
σGr
(0) is practically equal to the safe stress σ0 and the quantity σGr

(0) is not a criterion of the athermal fracture defined
by σc, because σc is an order of magnitude larger than this quantity. Moreover, the change to the athermal-fracture
mechanism happens earlier than σc is attained. From the physical standpoint, it is more correct to consider the quan-

Fig. 2. Diagram of the strength states of the PMMA with a surface crack at 20oC:
1) σ0 (log l0); 2) σGr (log l0); 3) boundary of the transient region; 4) σc (log l0). σ,
MPa; l0, m.
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tity σf, which is somewhat smaller than σc, as the critical stress. When the temperature decreases, σf tends to σc
and, at absolute zero, these quantities become equal. The diagram presented also makes it possible to determine the
degree of danger of surface (or internal) defects at a definite external load and to classify the regions of initial de-
fects with respect to the stresses under which they are formed: I) region of submicronic cracks (quasi-safe stresses
σGr
(0), at which the longevity of a sample can be infinitely large); II) region of microscopic cracks (an athermofluctu-

ation fracture occurring at a rate determined by (35); III) region of macrocracks (an athermal fracture occurring at a
rate determined by (1)). The mechanism of fracture of a sample depends on the region in which a point of an initial
crack having a definite length is found. In other words, in polymers there are a number of sub- and microcracks dis-
tributed depending on the degree of their danger, which was supported experimentally in [2] in the process of inves-
tigating the statical strength and longevity properties of polymer films and fibers on the basis of the corresponding
levels of their strength characteristics. In [2], the discrete character of the defect structure of polymers was deter-
mined in the process of investigating the function of distribution of the strength and longevity of their stressed sam-
ples. Our consideration will be incomplete if we do not explain the Griffith experiment in which the condition
σGr√l0  = const was verified. Griffith, in his experiments, made cracks of different length at the edge of a glass plate
and measured, under the conditions of one-axis extension, the load at which the glass was broken down. He found
that σGr√l0  = 25.5⋅104 N/m3 ⁄ 2. Relation (35) makes it possible to explain the Griffith experiment. In the case where
the stresses in (35) are much larger than the quasi-safe stress, the recombination of bonds at the top of a crack can
be disregarded and

v (l, σ, T) = λv0 exp 



− 

U0 − qT − Vaσ
∗
 − πσ2

l0λλπ ⁄ 2E

kT




 . (39)

From this relation we obtain the following criterion for the change to the athermal stage of the fracture: when a crack
attains the critical length l = lc, the local stress at its top reaches the critical value σc

∗ = βσ√lc ⁄ l0 and the rate of
growth of the crack becomes constant independently of the temperature. The latter means that U0 − qT − Vaσc

∗ −
π2lcλλπ/(2E) = 0. We will solve this equation with respect to the quantity √lc ⁄ l0  and estimate the relative critical
length of the crack (as in (36)) √lc ⁄ l0 . For PMMA [2]: λ = 12⋅10−4 µm, λπ = 8⋅10−4 µm, U0 = 1.33⋅105 J/mole, q =
16.76⋅105 J/(mole⋅K), T = 293 K, and Va = 1.4⋅10−28 m3; for inorganic (silicate) glass [2]: λ = 5.4⋅10−4 µm, λπ =
10.8⋅10−4 µm, U0 = 5.66⋅105 J/mole, q = 41.9⋅105 J/(mole⋅K), T = 293 K, and Va = 9.6⋅10−29 m3 (the other constants
are presented above). Both variants give

√lc
 ⁄ l0  = √2E (U0 − qT)

πσ2
l0λλπ

 . (40)

In the case where a critical (breaking) stress σ = σc is applied to a sample, l0 = lc and expression (40) leads
to the relation

σc = √2E (U0 − qT)
πl0λλπ

 , (41)

explaining the sense of the Griffith experiment. Actually, it follows from (41) that σc√l0 = const and, for the inorganic
glass with the above-indicated constants we obtain from (41) that σc√l0 = 24.5⋅104 N/m3 ⁄ 2, which is practically equal
to the value obtained in the Griffith experiments.

Thus, the condition σc√l0  = const verified experimentally by Griffith corresponds to the result obtained using
(41). However, Griffith did not obtain this relation because he used the mechanical approach. Relation (41) also leads
to another interesting result. According to [1, 2], the fluctuation volume Va = λλπλm, σ0 = αsur/(βλm), the structure-
sensitive coefficient in the Zhurkov longevity formula γ = Vaβ, and expression (41) takes the form

σc = σGr √(U0 − qT) ⁄ (γσ0)  , (42)
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from which the difference between the Griffith damage threshold (in the generally accepted terminology) and the criti-
cal (breaking) stress is evident. Up to this point, in the majority of scientific publications on the strength and fracture
of polymer materials, the quantity σGr has been considered as the criterion of athermal fracture. The relations pre-
sented above show that this standpoint should be revised because the Griffith criterion is not a fracture criterion in the
generally accepted sense.

NOTATION

AS, work of the external forces; Cr, contour (Fig. 1); C0, C1, C′, constants; D, convex region outside the
crack; E, Young modulus; e, sum of deformations along the axis on a plane; f and F, functions; G, shear modulus;
G∗, region consisting of points of a crack; J1, J2, J3, integrals; Im, imaginary part; k, Boltzmann constant; l, l0, and lc,
current, initial, and critical length of the crack; L, length of a sample shaped as a strip; L∆, contour formed by the
lower and upper edges of the crack; n, normal to the contour L∆; P(x), normal load on the crack; p, sum of functions;
Π, surface energy of the crack; q′, algebraic sum of functions; q, coefficient of temperature dependence of the activa-
tion energy; r, radius of a circle; R0, initial radius of a circular crack; R2, points of the plane; Re, real part; dS, dif-
ferential of the arc S; S′, area of the crack; t′, tangent to the contour of the crack; T, temperature; t, variable of
integration along the length of the crack; U0, activation energy in the absence of a stress; ui, components of the dis-
placement vector; ui,j, derivative of the displacement component; uy

%, displacement component at the upper and lower
edges of the crack, respectively; Va, fluctuation volume at the top of the crack; v, rate of growth of the crack; vc, criti-
cal rate; W, deformation energy (elastic energy of a body); x, y, Cartesian coordinates; z = x + iy, z

_
 = x − iy, complex

numbers; z′, integration variable; αsur, free surface energy; β, coefficient of stress concentration; γ, structure-sensitive
coefficient; γxy, deformation; Γ, Γ′, Γ

__
, Γ′
__

, constants; δij, Kronecker symbol; εij, deformation; ε∞, constant; ε, radius of
semicircle MQN (Fig. 1); κ, constant; λ∗, Lame′ coefficient; λ, fluctuation extension of the crack; Λ, closed (virtual)
contour enclosing the crack; λi, λm, components of the fluctuation volume; µ, isothermal Lame′ coefficient (equal to
the shear modulus); ν, Poisson coefficient; ν0, frequency of thermal fluctuations of kinetic units; ρ, density; σij,
stresses; σ, constant tensile stress; σc, critical (external) stress; σf, the smallest stress of the transient region; σ∗, local
stress at the top of the crack; σGr, Griffith stress; σGr

(0), quasi-safe Griffith stress; σyy
(∞), σxx

(∞), σxy
(∞), components of the

stress tensor at infinitely distant points; τ, time; τf, longevity at the fluctuation stage of fracture; τc, longevity at the
athermal stage of fracture; Φ(z), ϕ1(z), functions; ϕ, polar angle; χ, constant; X(z), Plemel function; Ω(z), ω(z), func-
tions. Subscripts: c, critical; sur, surface; f, fluctuation; ′, variable.
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